Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasitol Res ; 123(3): 173, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536506

RESUMEN

Balamuthia mandrillaris is the causative agent of granulomatous amoebic encephalitis, a rare and often fatal infection affecting the central nervous system. The amoeba is isolated from diverse environmental sources and can cause severe infections in both immunocompromised and immunocompetent individuals. Given the limited understanding of B. mandrillaris, our research aimed to explore its protein profile, identifying potential immunogens crucial for early granulomatous amoebic encephalitis diagnosis. Cultures of B. mandrillaris and other amoebas were grown under axenic conditions, and total amoebic extracts were obtained. Proteomic analyses, including two-dimensional electrophoresis and mass spectrometry, were performed. A 50-kDa band showed a robust recognition of antibodies from immunized BALB/c mice; peptides contained in this band were matched with elongation factor-1 alpha, which emerged as a putative key immunogen. Besides, lectin blotting revealed the presence of glycoproteins in B. mandrillaris, and confocal microscopy demonstrated the focal distribution of the 50-kDa band throughout trophozoites. Cumulatively, these observations suggest the participation of the 50-kDa band in adhesion and recognition mechanisms. Thus, these collective findings demonstrate some protein characteristics of B. mandrillaris, opening avenues for understanding its pathogenicity and developing diagnostic and therapeutic strategies.


Asunto(s)
Amebiasis , Amoeba , Balamuthia mandrillaris , Encefalitis Infecciosa , Animales , Ratones , Proteómica , Amebiasis/tratamiento farmacológico
2.
Infect Immun ; 91(7): e0018123, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37272791

RESUMEN

Naegleria fowleri is an etiological agent that generates primary amoebic meningoencephalitis; unfortunately, no effective treatment or vaccine is available. The objective of this work was to determine the immunoprotective response of two vaccine antigens, as follows: (i) the polypeptide band of 19 kDa or (ii) a predicted immunogenic peptide from the membrane protein MP2CL5 (Smp145). Both antigens were administered intranasally in mice using cholera toxin (CT) as an adjuvant. The survival rate and immune response of immunized mice with both antigens and challenged with N. fowleri trophozoites were measured in the nose-associated lymphoid tissue (NALT) and nasal passages (NPs) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We also determined the immunolocalization of both antigens in N. fowleri trophozoites by confocal microscopy. Immunization with the polypeptide band of 19 kDa alone or coadministered with CT was able to confer 80% and 100% of protection, respectively. The immunization with both antigens (alone or coadministered with CT) showed an increase in T and B lymphocytes. In addition, there was an increase in the expression of integrin α4ß1 and IgA in the nasal cavity of protected mice, and the IgA, IgG, and IgM levels were increased in serum and nasal washes. The immunolocalization of both antigens in N. fowleri trophozoites was observed in the plasma membrane, specifically in pseudopod-like structures. The MP2CL5 antigens evaluated in this work were capable of conferring protection which would lead us to consider them as potential candidates for vaccines against meningitis caused by N. fowleri.


Asunto(s)
Meningitis , Naegleria fowleri , Vacunas , Animales , Ratones , Toxina del Cólera , Inmunidad , Inmunoglobulina A
3.
Parasitol Res ; 121(11): 3287-3303, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36125528

RESUMEN

Naegleria fowleri causes primary amoebic meningoencephalitis in humans and experimental animals. It has been suggested that cysteine proteases of parasites play key roles in metabolism, nutrient uptake, host tissue invasion, and immune evasion. The aim of this work was to evaluate the presence, expression, and role of cathepsin B from N. fowleri in vitro and during PAM. Rabbit-specific polyclonal antibodies against cathepsin B were obtained from rabbit immunization with a synthetic peptide obtained by bioinformatic design. In addition, a probe was designed from mRNA for N. fowleri cathepsin B. Both protein and messenger were detected in fixed trophozoites, trophozoites interacted with polymorphonuclear and histological sections of infected mice. The main cathepsin B distribution was observed in cytoplasm or membrane mainly pseudopods and food-cups while messenger was in nucleus and cytoplasm. Surprisingly, both the messenger and enzyme were observed in extracellular medium. To determine cathepsin B release, we used trophozoites supernatant recovered from nasal passages or brain of infected mice. We observed the highest release in supernatant from recovered brain amoebae, and when we analyzed molecular weight of secreted proteins by immunoblot, we found 30 and 37 kDa bands which were highly immunogenic. Finally, role of cathepsin B during N. fowleri infection was determined; we preincubated trophozoites with E-64, pHMB or antibodies with which we obtained 60%, 100%, and 60% of survival, respectively, in infected mice. These results suggest that cathepsin B plays a role during pathogenesis caused by N. fowleri mainly in adhesion and contributes to nervous tissue damage.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central , Proteasas de Cisteína , Meningoencefalitis , Naegleria fowleri , Animales , Catepsina B/genética , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Proteasas de Cisteína/metabolismo , Humanos , Meningoencefalitis/parasitología , Ratones , Naegleria fowleri/genética , ARN Mensajero , Conejos , Trofozoítos/metabolismo
4.
Parasite Immunol ; 43(12): e12882, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570374

RESUMEN

The aims of this work were to evaluate the protective role of the 250-kDa polypeptide band of Naegleria fowleri. We designed an immunization strategy in Balb/c mice which were inoculated by i.n. route with an electrocuted 250-kDa polypeptide band of N. fowleri. We observed that the 250-kDa band induced 80% of protection, whereas the coadministration with Cholera Toxin induced 100% of protection. Moreover, high levels of IgA- and IgG-specific antibodies were detected by ELISA assay. We also analysed migration molecules (α4ß1 and LFA-1) on T and B lymphocytes in nose-associated lymphoid tissue (NALT), cervical lymph nodes (CN) and nasal passages (NP) by flow cytometry. We observed that the percentage of B cells (B220/α4ß1) and T cells (CD4/α4ß1) in NP were higher in all immunized groups compared with the other compartments analysed. Finally, we detected by immunohistochemistry ICAM-1 and V-CAM-1 in the nasal cavity. The immunization with the 250-kDa polypeptide band, protect mice against N. fowleri challenge and modifies migration molecules and their ligands.


Asunto(s)
Meningitis , Naegleria fowleri , Administración Intranasal , Animales , Linfocitos B , Antígeno-1 Asociado a Función de Linfocito , Ratones , Ratones Endogámicos BALB C
5.
Pathogens ; 9(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036396

RESUMEN

Members of the genus Naegleria are free-living amoebae that are widely distributed in water and soil environments. Moreover, Naegleria fowleri is a pathogenic amoeba species that causes a fatal disease in the central nervous system known as primary amoebic meningoencephalitis (PAM) in humans. Since most reported infections due to N. fowleri are reported in recreational waters worldwide, this study was aimed to describe the presence of these amoebic genus in Mexicali Valley irrigation channels of recreational use. A total of nine water samples were collected and processed by triplicate, in nine different sites of the Valley. After filtering and culturing the samples, plates were examined, and the observed amoebae were morphologically identified at the genus level. In addition, the pathogenicity of these amoebic isolates was checked, and molecular characterization was performed by PCR/sequencing. The results revealed the presence of Naegleria spp. in all the channels sampled. Finally, molecular identification confirmed the presence of five different species of Naegleria: N. fowleri, N. australiensis, N. gruberi, N. clarki and N. pagei. The presence of these protists, particularly N. fowleri, should be considered as a potential human health risk in the region.

6.
Pathogens ; 9(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531943

RESUMEN

The intranasal administration of Naegleria fowleri lysates plus cholera toxin (CT) increases protection against N. fowleri meningoencephalitis in mice, suggesting that humoral immune response mediated by antibodies is crucial to induce protection against the infection. In the present study, we applied a protein analysis to detect and identify immunogenic antigens from N. fowleri, which might be responsible for such protection. A Western blot assay of N. fowleri polypeptides was performed using the serum and nasal washes from mice immunized with N. fowleri lysates, either alone or with CT after one, two, three, or four weekly immunizations and challenged with trophozoites of N. fowleri. Immunized mice with N. fowleri plus CT, after four doses, had the highest survival rate (100%). Nasal or sera IgA and IgG antibody response was progressively stronger as the number of immunizations was increased, and that response was mainly directed to 250, 100, 70, 50, 37, and 19 kDa polypeptide bands, especially in the third and fourth immunization. Peptides present in these immunogenic bands were matched by nano-LC-ESI-MSMS with different proteins, which could serve as candidates for a vaccine against N. fowleri infection.

7.
Parasite Immunol ; 42(6): e12715, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32191816

RESUMEN

Many pathogenicity factors are involved in the development of primary amoebic meningoencephalitis (PAM) caused by N fowleri. However, most of them are not exclusive for N fowleri and they have not even been described in other nonpathogenic Naegleria species. Therefore, the objective of this work was to identify differential proteins and protein pattern recognition between Naegleria fowleri and Naegleria lovaniensis using antibodies anti-N fowleri as strategy to find vaccine candidates against meningoencephalitis. Electrophoresis and Western blots conventional and 2-DE were performed for the identification of antigenic proteins, and these were analysed by the mass spectrometry technique. The results obtained in 2-DE gels and Western blot showed very notable differences in spot intensity between these two species, specifically those with relative molecular weight of 100, 75, 50 and 19 kDa. Some spots corresponding to these molecular weights were identified as actin fragment, myosin II, heat shock protein, membrane protein Mp2CL5 among others, with differences in theoretical post-translational modifications. In this work, we found differences in antigenic proteins between both species, proteins that could be used for a further development of vaccines against N fowleri infection.


Asunto(s)
Antígenos de Protozoos/inmunología , Infecciones Protozoarias del Sistema Nervioso Central/inmunología , Meningoencefalitis/inmunología , Naegleria fowleri/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Proteínas de la Membrana/inmunología , Meningoencefalitis/parasitología
8.
Parasite Immunol ; 41(2): e12610, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30525201

RESUMEN

Naegleria fowleri is a free-living amoeba, which is able to infect humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. These structures represent an important strategy to immobilize and kill invading microorganisms. In this work, we evaluate the capacity of N fowleri to induce the NETs release by PMNs cells in mice in vitro and in vivo. In vitro: Neutrophils from bone marrow were cocultured with N fowleri trophozoites. In vivo: we employed a mouse model of PAM. We evaluated DNA, histone and myeloperoxidase (MPO) and the formation of NETs by confocal microscopy. Our results showed N fowleri induce both NETs and MPO release by PMNs cells in mice after trophozoite exposure, which increased through time, in vitro and in vivo. These results demonstrate that NETs are somehow associated with the amoebas. We suggest PMNs release their traps trying to avoid N fowleri attachment at the apical side of the nasal epithelium.


Asunto(s)
Trampas Extracelulares , Naegleria fowleri/inmunología , Neutrófilos/inmunología , Amebiasis , Animales , Células Cultivadas , Infecciones Protozoarias del Sistema Nervioso Central/inmunología , Técnicas de Cocultivo , ADN Protozoario/análisis , Histonas/análisis , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Mucosa Nasal/inmunología , Peroxidasa/análisis , Trofozoítos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...